Chemistry of Glycolysis

C483 Spring 2013

- 1. During glycolysis, isomerization occurs during which of the following reactions?
- A) Fructose 1,6-bisphosphate \Rightarrow dihydroxyacetone phosphate and glyceraldehyde 3-phosphate.
- B) Fructose 6-phosphate \rightarrow fructose 1,6-bisphosphate.
- C) Glucose 6- phosphate → fructose 6- phosphate.
- D) Glucose \rightarrow glucose 6- phosphate.
- 2. Glyceraldehyde 3-phosphate dehydrogenase causes
- A) the reduction and phosphorylation of glyceraldehyde 3-phosphate to produce 1,3-bisphosphoglycerate.
- B) the oxidation of a molecule of NAD+ to NADH.
- C) The reduction of phosphate
- D) The oxidation of glyceraldehyde and formation of a high energy bond
- 3. Although the standard Gibbs free energy change for the reaction of glyceraldehyde -
- 3-P DH is positive (+6.7 kJ/mole), the reaction proceeds to the right because
- A) triose phosphate isomerase supplies so much starting material.
- B) The product of the reaction is consumed as soon as it is made.
- C) there are too few molecules of starting material available.
- D) The Gibbs free energy is negative under cellular conditions
- E) More than one of the above is an acceptable answer

- 4. Transfer of the phosphoryl group from PEP to ADP is an example of
- A) a mutase reaction.
- B) isomerization.
- C) dehydrogenation.
- D) substrate-level phosphorylation.
- E) oxidation
- 5. Histidine plays a role in the phosphoglycerate mutase reaction in glycolysis for muscle and yeast In what way?
- A) Acts as a covalently bound phosphate intermediate
- B) Acts as a covalently bound acyl intermediate.
- C) Acts as an acid
- D) Acts as a base

Expectations

- Memorize/learn Table 11.1
- Know overall reaction and stages
- Explain chemical logic of each step
- Enzyme mechanisms of aldolase and phosphoglycerate mutase

Glycolysis

- Ten enzymes that take glucose to pyruvate
- Cytosol
- ATP and NADH

Know this Table!

- Know substrates, co-substrates, products, enzyme names
- Fill in the blank problems

Table 11.1 The reactions and enzymes of glycolysis 1. Glucose + ATP \longrightarrow Glucose 6-phosphate + ADP + H^{\oplus} 2. Glucose 6-phosphate Fructose 6-phosphate Glucose-6-phosphate isomerase 3. Fructose 6-phosphate + ATP \longrightarrow Fructose 1,6-bisphosphate + ADP + H \oplus Phosphofructokinase-1 5. Dihydroxyacetone phosphate \implies Glyceraldehyde 3-phosphate Triose phosphate isomerase 6. Glyceraldehyde 3-phosphate + NAD⊕ + P_i = 1,3-Bisphosphoglycerate + NADH + H⊕ Glyceraldehyde 3-phosphate dehydrogenase 7. 1,3-Bisphosphoglycerate + ADP === 3-Phosphoglycerate + ATP Phosphoglycerate kinase 8. 3-Phosphoglycerate \implies 2-Phosphoglycerate Phosphoglycerate mutase 9. 2-Phosphoglycerate → Phosphoenolpyruvate + H₂O Enolase 10. Phosphoenolpyruvate + ADP + H $^{\oplus}$ \longrightarrow Pyruvate + ATP Pyruvate kinase

1. Hexokinase

- Previous concepts: Induced fit, kinase
- Energy use/production?
- Chemical logic?
- Isozyme: glucokinase

2. G-6-P Isomerase

- Previous concepts: Isomerization
- Energy use/production? CONCEPT: NET FLUX
- Chemical logic?
- Stereochemistry—reverse does not produce mannose!

3. PFK-1

- Previous concepts: Allosteric inhibition
- Energy use/production?
- Chemical logic?
- First committed step of glycolysis

4. Aldolase

- Previous concepts: Standard free energy is +28kJ, but it is a near equilibrium reaction
- Energy use/production?
- Chemical logic?
- Beginning of triose stage

$$\begin{array}{c} \begin{tabular}{c} \begi$$

5. Triose Phosphate Isomerase

- Previous concepts: Catalytic perfection
- Energy use/production?
- Chemical logic?
- Most similar to which previous reaction?

6. Glyceraldehyde-3-P DH

- Previous concepts: Redox and dehydrogenase
- Energy use/production?
- Chemical logic?
- Effective [1,3bPG] = zero

7. Phosphoglycerate Kinase

- Previous concepts: High energy bond
- Energy use/production?
- Chemical logic?
- Substrate level phosphorylation

OPO₃ COO COO H—C—OH + ADP Phosphoglycerate kinase CH₂OPO₃ CH₂OPO₃ S-Phosphoglycerate CH₂OPO₃ S-Phosphoglycerate 3-Phosphoglycerate CH₂OPO₃ S-Phosphoglycerate
$$-$$
 NADH + H $^{\oplus}$ 1,3-Bisphosphoglycerate + NADH + ADP $-$ 3-Phosphoglycerate + ATP

 $Glyceraldehyde \ 3-phosphate + NAD \ \oplus \ + P_i + ADP \ \longrightarrow \ 3-Phosphoglycerate + NADH + H \ \oplus \ + ATP \ \\ {\tiny 0.2012 \ Person Education, Pric.}$

8. Phosphoglycerate Mutase

- Previous concepts: Covalent catalysis
- Energy use/production?
- Chemical logic?
- Mutase—isomerzation with P transfer

9. Enolase

- Previous concepts: Phosphoryl group transfer potential
- Energy use/production?
- Chemical logic?

$$\begin{array}{c|c} \mathsf{COO}^{\scriptsize \bigcirc} \\ \mathsf{H} - \begin{subarray}{c} \mathsf{COO}^{\scriptsize \bigcirc} \\ \mathsf{COO}^{\scriptsize$$

10. Pyruvate Kinase

- Energy use/production?
- Chemical logic?
- Payback phase

$$\begin{array}{c} \mathsf{COO}^{\scriptsize \bigcirc} \\ | \\ \mathsf{C} - \mathsf{OPO}_3^{\scriptsize \bigcirc} \\ | \\ \mathsf{CH}_2 \end{array} + \mathsf{ADP} + \mathsf{H}^{\scriptsize \bigcirc} \\ \stackrel{\mathsf{Pyruvate}}{\longleftrightarrow} \\ \mathsf{kinase} \\ \mathsf{Enolpyruvate} \\ & \mathsf{Enolpyruvate} \\ & \mathsf{Enolpyruvate} \\ & \mathsf{Pyruvate} \\ & \mathsf{Pyruvate} \\ \end{aligned}$$

Answers

- 1. C
- 2. D
- 3. E
- 4. D
- 5. A